• Pre-Engineering Classes



    EGR 215

    RIGID BODY STATICS This course provides engineering students a clear and thorough presentation of the theory and application of engineering mechanics to analyze problems—based on forces in static equilibrium acting upon particles and rigid bodies—in a simple and logical manner. Topics include vector analysis of concentrated and distributed force systems by using free body diagrams, moments of force, structural analysis and trusses, couples and equivalent systems, internal forces, friction, centroids, centers of gravity and mass, moments of inertia, and virtual work.
    Prerequisites: PHY 220, PHY 221; Co-requisite: MTH 162
    3 credit hours


    EGR 216

    RIGID BODY DYNAMICS This course will introduce the principles of dynamics of particles and the corresponding equations for rectilinear and curvilinear motion. The dynamics of rigid bodies and selected non-rigid systems in multiple dimensions with an emphasis on engineering applications will be covered. Kinematic analyses of dynamics problems will employ graphical and analytical vector techniques. Absolute and relative motion analysis, work-energy, impact, impulsemomentum, and vibrations are covered. Time permitting, the application of Lagrange’s equations to dynamic problems will be introduced.
    Prerequisites: EGR 215
    3 credit hours


    EGR 217

    STRENGTH OF MATERIALS This course will provide knowledge of a broad range of mechanical properties (modes of deformation, modes of failure) of materials that will be mathematically described for reliability predictions and for choosing materials appropriate to a specific application. Emphasis is on brittle materials, but the behavior of viscoelastic and ductile materials will also be covered. Concepts to be covered include: forces, stresses and strains in solids; linear elasticity and elastic instability; deformation, deflection, and stress analysis of structural members (beams, torsion of circular shafts, pressure vessels, etc.); stress and strain transformations; principal stresses; failure theories; statically indeterminate structures; temperature and pre-strain effects; shear force and bending moment; axial, shear, bearing and bending stresses; the concept of column buckling; and Mohr’s circle.
    Prerequisites: PHY 220, PHY 221; Co-requisite: MTH 162
    3 credit hours


    EGR 218

    ENGINEERING THERMODYNAMICS This course will provide a fundamental grounding in the principles and methods of classical engineering thermodynamics, with an emphasis on practical applications through analytical problem formulation and solving. Topics to be covered include heat, work, kinetic theory of gases, thermodynamics systems and equations of state, the four laws of thermodynamics, energy availability, reversible and irreversible processes, control volumes, phase change and multiphase systems, steam quality and superheating, and an introduction to the basic operation of thermodynamic power cycles.
    Prerequisites: PHY 224, PHY 225
    3 credit hours

FacebookTwitterFlickr LogoYouTube Logorss icons
 
MyFranciscan - Click here

GET CONNECTED!

Get Connected Picture  

Information
for Future:

Click here to log in
Click here to get help
Contact Us | Campus E-mail | Directions | Search | CALENDARS | Privacy Policy | MYFranciscan  | Nondiscrimination Statement
 

1235 University Blvd, Steubenville, Ohio 43952 | Main 740-283-3771 | Consumer Information © Franciscan University of Steubenville